DataAnalysis
___Keyword___
pd.read_csv('sales.csv')
sales = pd.read_csv('sales.csv')
sales.head(11)
sales['Invoice ID']
sales['Category'].unique()
sales.iloc[200]
sales[200:205]
sales.tail(2)
sales[sales['Gender']=='Male']
sales[sales['Gender']=='Male'].head(11)
sales[sales['Total']>100]
sales[sales['Total'].between(100,200)]
sales.sum()['Total']
sales.max()
sales.max()['Price']
sales[sales['Total']==sales.max()['Total']]
sales.min()
sales.min()['Total'] or sales['Total'].min()
sales[sales['Total']==sales.min()['Total']]
sales['Total'].mean()
sales.groupby('Gender').sum()['Total']
sales.groupby(['Gender', 'Payment']).size()
Video 1
import pandas as pdpd.read_csv('sales.csv')
sales = pd.read_csv('sales.csv')
sales.head(11)
sales['Invoice ID']
sales['Category'].unique()
sales.iloc[200]
sales[200:205]
sales.tail(2)
Video 2
sales[sales['Gender']=='Male']
sales[sales['Gender']=='Male'].head(11)
sales[sales['Total']>100]
sales[sales['Total'].between(100,200)]
Video 3
sales.max()
sales.max()['Price']
sales[sales['Total']==sales.max()['Total']]
sales.min()
sales.min()['Total'] or sales['Total'].min()
sales[sales['Total']==sales.min()['Total']]
sales['Total'].mean()
Video 4
sales.groupby('City').sum()sales.groupby('Gender').sum()['Total']
sales.groupby(['Gender', 'Payment']).size()
No comments